Ответ: В настоящее время на рынке предлагаются специальные ЛКМ, которые можно наносить по ржавчине и окалине. Такие материалы относятся преимущественно к водно-дисперсионным грунтам и грунт-краскам, содержащим орто-фосфорную кислоту. Известны также органоразбавляемые двухупаковочные составы на основе эпоксидных смол, содержащие ингибиторы коррозии и целевые добавки (например, ЭП-0199, грунт-эмаль Гремируст и др.), или материалы, содержащие добавки эпоксидной смолы в органический раствор сополимера винилхлорида с винилацетатом (ХС-500). Подобные ЛКМ известны и на основе алкидных
смол.
Возможность применения ЛКМ нанесением по ржавчине обусловлено специальными их свойствами: пропитывать слой ржавчины, пассивировать, стабилизировать или преобразовывать в соединения, пассивирующие поверхность (например, фосфаты, хроматы). Считается, что благодаря этим свойствам улучшается адгезия, увеличиваются изоляционные свойства покрытия.
Несмотря на достоинство указанных
ЛКМ по ржавчине, они имеют существенные недостатки, весьма ограничивающие срок службы покрытий:
- Все они лишь несколько увеличивают изоляционные свойства покрытия, но даже самые лучшие из них не обеспечивают 100%-ную изоляцию от агрессивной среды. Значит, под плёнкой коррозионный процесс продолжается, а это ещё опаснее, чем поверхностная коррозия.
- Нарушение сплошности покрытия, возникающее в результате механических нагрузок, перепадов температур и др. в процессе эксплуатации конструкций, вызывают ускоренную коррозию под плёнкой.
И наконец, следует вспомнить, что коррозия железа (стали) является преимущественно электрохимическим процессом, протекающим в поверхностном слое стальной конструкции. Поверхностный слой стального листа или прокатного изделия характеризуется иным химическим составом, чем в объёме. Благодаря этому поверхностный слой отличается высокой гетерогенностью, состоящей из анодных и катодных участков (микрогальванопар), обусловливающих движение электронов от анода к катоду и ионов в растворе, создавая условия возникновения коррозионного тока, образующего ржавчину.
Предотвратить коррозию означает остановить протекание коррозионного тока. Осуществить это возможно только электрохимическими методами. Одним из них является защита стали способом «холодного» цинкования специальными
цинкнаполненными лакокрасочными материалами, состоящими из полимерного связующего и высокодисперсного цинкового порошка в качестве пигмента.
Цинконаполненные краски
Цинкнополненные покрытия (ЦНП) по свойствам занимают промежуточное положение между горячеоцинкованной сталью и полимерным лакокрасочным покрытием (ЛКП) и защищают сталь сочетанием электрохимического и барьерного способа. Электрохимическая защита осуществляется благодаря катодной поляризации поверхности стали анодным ЦНП, которая обусловливает возникновение скачка потенциала на границе сталь-ЦНП и протекание защитного тока.
Эффективность электрохимической защиты характеризуется величиной защитного тока, способного подавить коррозионный ток. Само покрытие при этом растворяется в коррозионной среде, образуя в основном нерастворимые продукты реакции, цементирующие покрытие, создавая барьерный эффект. Создание цинкнаполненных материалов и их практическое применение, несмотря на аналогию с полимерными ЛКМ, связаны с рядом специфических особенностей:
1. Применяемые полимеры, в отличие от обычных ЛКМ, должны быть пористыми, электропроводными, неомыляемыми, щелочестойкими и т. д.
2. Применение
цинконаполненных красок требует тщательной предварительной очистки поверхности стали. Долговременную и качественную защиту обеспечивает абразивоструйная очистка до чистого металла. Это требование сдерживает повсеместное использование цинконаполненных красок при проведении крупномасштабных ремонтов промышленного оборудования и строительных металлоконструкций.
Имея опыт производства и применения цинкнаполненных красок, нам удалось создать уникальный материал, который пропитывает всю толщу ржавчины, химически взаимодействует с окалиной и ржавчиной, а также с применяемыми пигментами, образуя токопроводящий металлоорганический хелатный комплекс –
грунтовку-преобразователь ржавчины марки Нанораст. Уникальность Нанораст
а заключается не столько в образовании собственно комплекса, а в том, что его образованию предшествует процесс восстановления ржавчины из растворимой в воде гидроокиси железа в нерастворимую окись двухвалентного железа - гематит. Гематит – химически инертный, стойкий к действию воды, щелочей и кислот, а с электрохимической точки зрения – типичный полупроводник, в определённых условиях обладающий электронной проводимостью. Восстановление ржавчины происходит металлическим цинком.
Образование токопроводящего промежуточного слоя между сталью и цинконаполненным покрытием обеспечивает сквозную проводимость от цинка к стали, о чём свидетельствует смещение электродного потенциала стали в более отрицательную область (см. табл.). Электродные потенциалы измерялись методом прямой потенциометрии в нейтральной среде при 200С (в 3%-ом растворе NaCl) относительно хлорсеребряного насыщенного электрода на универсальном иономере ЭВ-74.
Электродные потенциалы стали в растворе 3%-го хлорида натрия при 200С
Наименование покрытия | Электродный потенциал относительно н.в.э, В | Содержание металлического цинка в сухом покрытии, % (масс.) | Общее содержание антикоррозионных пигментов в сухом покрытии, % (масс.) |
1. Горячая оцинковка | - 0,78 | 100 | 100 |
2. Сталь углеродистая марки 08пс | - 0,44 | подложка под покрытие | отс. |
3. ПС Цинк | - 0,78 | 96 | 96 |
4. Наноцинк | - 0,71 | 82 | 89 |
5. | - 0,72 | 83 | 87 |
| | | |
6. Нанораст | - 0,70 | 46 | 57 |
Как видно из таблицы, Нанораст, несмотря на существенно более низкое содержание цинка в покрытии, обладает протекторными свойствами по величине, приготовленном на том же связующем.
Относительно протекторных свойств ЦНП сложилось традиционное мнение о том, что для осуществления электрохимической защиты они должны содержать не менее 90% метал-лического цинка в сухом покрытии. На самом деле это не так. В ИСО 12944-5:1998 уровень содержания цинка в сухом покрытии для цинкнаполненых красок ограничен величиной не менее 80%, в национальных стандартах некоторых стран, например, DIN 55969, предписы-вают содержание не менее 94% металлического цинка, в литературе есть указания, что при использовании комплексных систем защиты достаточно содержания цинка 60%. Такие разночтения обусловлены влиянием множества факторов на протекторные свойства ЦНП и дли-тельность их действия с одной стороны и практическим отсутствием фактических данных по влиянию этих факторов, в частности, структуры и свойств применяемых полимеров, особенно модифицированных и пластифицированных, обладающих электронной и ионной проводимостью, дисперсности порошков и формы частиц, использования смеси пигментов и др. Данные табл. свидетельствуют о том, что ЦНП при одинаковом качестве цинкового порошка и разном его содержании в сухом покрытии очень мало отличаются по протекторным свойствам как между собой, так и с горячеоцинкованным покрытием. Они различаются природой связующего и содержанием в покрытии других антикоррозионных пигментов, обладающих электропроводностью. Отсюда следует, что протекторные свойства ЦНП управляемы не только наполнением цинком сухого покрытия, но и свойствами применяемых полимеров, а также присадками других антикоррозионных пигментов.
Разработка НанорастА как раз и явилась результатом оптимального сочетания перечис-ленных факторов и условий, обеспечивающих образование токопроводящего промежуточно-го слоя и протекание реакции восстановления металлическим цинком гидроокиси трёхва-лентного железа (собственно ржавчины) в окисел двухвалентного железа.
Нанораст – одноупаковочный готовый к употреблению цинксодержащий грунт-преобразователь ржавчины, предназначенный для нанесения именно по ржавчине в качестве подслоя при применении цинкнаполненных грунтовок вместо других способов подготовки поверхности при проведении ремонтов старых покрытий действующего оборудования и эксплуатируемых металлоконструкций на предприятиях. Высокая проникающая способность в слой ржавчины, обеспечивающая эффективную пропитку даже толстых слоёв ржавчины, превышающих 100 мкм. Не рекомендуется использовать этот материал по поверхности нового металла, не содержащего ржавчины.
В исключительных случаях его целесообразно применять по поверхности чёрной окали-ны в качестве межоперационной защиты. Нанораст в западной терминологии – это типичный шоп-праймер. Нанораст содержит также специальную водопоглощающую добавку для погло-щения воды из ржавчины, поэтому при работе с этим материалом не опасна конденсация влаги из воздуха при перепаде температур. Полимерная основа этого материала совмещается практически со всеми ЛКМ, применяемыми для антикоррозионной защиты стали.